
Generative View-Correlation Adaptation for
Semi-Supervised Multi-View Learning

Yunyu Liu1, Lichen Wang1, Yue Bai1, Can Qin1,
Zhengming Ding2, and Yun Fu1

1 Northeastern University, MA, USA
2 Indiana University-Purdue University Indianapolis, IN, USA

{liu.yuny,bai.yue,qin.ca}@northeastern.edu
wanglichenxj@gmail.com zd2@iu.edu yunfu@ece.neu.edu

Abstract. Multi-view learning (MVL) explores the data extracted from
multiple resources. It assumes that the complementary information be-
tween different views could be revealed to further improve the learning
performance. There are two challenges. First, it is difficult to effectively
combine the different view data while still fully preserve the view-specific
information. Second, multi-view datasets are usually small, which means
the model can be easily overfitted. To address the challenges, we pro-
pose a novel View-Correlation Adaptation (VCA) framework in semi-
supervised fashion. A semi-supervised data augmentation me-thod is de-
signed to generate extra features and labels based on both labeled and
unlabeled samples. In addition, a cross-view adversarial training strat-
egy is proposed to explore the structural information from one view and
help the representation learning of the other view. Moreover, an effective
and simple fusion network is proposed for the late fusion stage. In our
model, all networks are jointly trained in an end-to-end fashion. Exten-
sive experiments demonstrate that our approach is effective and stable
compared with other state-of-the-art methods 3.

Keywords: Multi-view learning, Data Augmentation, Semi-supervised
learning

1 Introduction

Multi-view data refers to the data captured from multiple resources such as
RGB, depth, and infrared in visual space [38, 23, 33]. MVL methods assume that
the information from different views is unique and complementary. By learning
from different views, MVL methods could achieve better performance. Several
researches, such as [31, 8, 4, 13, 14, 9], have studied MVL in supervised setting.
However, the challenge is that labeling all the multi-view data can be extremely
expensive. Therefore, semi-supervised learning setting is a more practical strat-
egy since obtaining unlabeled data is easy.

3 Code is available on: https://github.com/wenwen0319/GVCA
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Fig. 1. The main challenge of MVL is that it is difficult to explore the latent correlations
across different views due to the view heterogeneity. For instance, different view data
from the same sample sometimes have the different predictions. Thus, effectively learn
the cross-view information and fully explore the unlabeled data can potentially improve
the learning performance.

As shown in Figure 1, the main challenge of MVL is that different views have
different data formats, feature distributions, and predicted results, namely data
heterogeneity. Multi-view fusion is an efficient strategy. It mainly divided into
three parts: raw-data fusion, feature-level fusion, and label-level fusion. [16] uti-
lized feature-level and label-level fusion for learning a better representation. [10]
applied GAN and directly translated one view to the other view which belongs to
raw-data fusion. Although these methods achieved good performance, they con-
sidered the three fusion strategies independently which cannot fully reveal the
latent relations between these steps. Semi-supervised learning [7, 10, 30, 29, 32] is
an effective approach which explores the unlabeled samples to increase the learn-
ing performance. [7] proposed a new co-training method for the training process.
[10] used the unlabeled data to enhance the view translation process. However,
these methods combined semi-supervised setting and multi-view learning in an
empirical way while lacked a unified framework to jointly solve the challenges.

In this work, we propose a View-Correlation Adaptation (VCA) framework
in semi-supervised scenario. The framework is shown in Figure 2. First, a specif-
ically designed View-Correlation Adaptation method is proposed. It effectively
aligns the feature distributions across different views. Second, a semi-supervised
feature augmentation (SeMix ) is proposed. It augments training samples by ex-
ploring both labeled and unlabeled samples. Third, we propose an effective and
simple fusion network to learn both inter-view and intra-view high-level label
correlations. By these ways, the label-level and feature-level fusion are consid-
ered simultaneously in an unified framework. This further helps our model obtain
more distinctive representation for classification. Extensive experiments demon-
strate that our method achieves the highest performance compared with state-
of-the-art methods. Ablation studies illustrate the effectiveness of each module
in the framework. The main novelties are listed below.

– A novel fusion strategy View-Correlation Adaptation (VCA) is deployed in
both feature and label space. VCA makes one view learn from the other view
by optimizing the decision discrepancy in an adversarial training manner.
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Fig. 2. Framework of our model. Multi-view samples first go through the view encoders
E1(·) and E2(·) and get the representation features. We design SeMix to the feature
space in order to expand the feature space and align the distribution of the labeled
and unlabeled data. The representation features are sent to the view-specific classifiers
C1(·) and C2(·). Then VCA-entropy is applied to learn general representations while
keeping view-specific characteristics. For two single views’ predictions of the unlabeled
data, the one with a high entropy should learn form the other one since the entropy
indicates the uncertainty of predictions. By playing an adversarial training strategy,
the view encoders learn general feature distributions and the view specific classifiers
keep view-specific characteristics. A cross-view fusion network CF (·) is used to fuse
the predictions and get a final result by capturing the inter-view and intra-view label
correlation.

– A new generative SeMix approach is proposed to fully utilize the labeled
and unlabeled data to expand the feature distributions and make the model
more robust.

– An effective label-level fusion network is proposed to obtain the final clas-
sification result. This module captures both the inter-view and intra-view
high-level label correlations to obtain a higher performance.

2 Related work

2.1 Multi-view Learning

Multi-view learning explores data from different views/resources for downstream
tasks (e.g., classification and clustering). RGB and depth are the two commonly
explored views of MVL. [8, 4, 13, 14, 28] focused on learning a better representa-
tion for actions using supervised information. [12, 27, 2, 16, 7, 10] studied multi-
view scene recognition. Conventional MVL methods focused on improving the
multi-view features. [4] introduced a multi-view super vector to fuse the action
descriptors. [13] combined optical flow with enhanced 3D motion vector fields to
fuse features. [12] used contours of depth images as the local features for scene
classification. [2] proposed a second-order pooling to extract the local features.
Deep learning framework was proposed in the fusion procedure recently due to its
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potential in a wide range of applications. [27] utilized a component-aware fusion
method to fuse the features extracted from deep models. [28] introduced a gener-
ative/mapping framework which learns the view-independent and view-specific
representations. [16] implemented a method to learn the distinctive embedding
and correlative embedding simultaneously. [10] proposed a generative method
and translated one view to the other to help classification.

However, the fusion modules are separated with other modules in most meth-
ods, which degrades the potential of the methods and make the training pro-
cedure tedious to obtain good results. Our model is a union framework with
both the label-level and feature-level fusion strategies. In addition, our model is
a more general framework which and can be adapted to different tasks.

2.2 Semi-supervised Learning

Semi-supervised learning deploys both unlabeled and labeled data in the training
procedure. It is an effective strategy for a situation where collecting data is easy
while labeling the data is extremely difficult. Semi-supervised learning explores
the structural information of the labeled and unlabeled data to improve the per-
formance. The general introduction of semi-supervised learning could be found in
[6]. [35] designed co-training method for semi-supervised learning. Two-learner
framework is utilized and the unlabeled samples would be assigned confident la-
bels based on the guidance of the two learners. [3] proposed a MixMatch frame-
work which guesses low-entropy labels for data-augmented unlabeled examples.
[36] proposed a multi-modal method based on Alexnet [15] to solve the miss-
ing view issues in semi-supervised fashion. [7] introduced a co-training method
combined with deep neural network. [21] implemented a graph-based method to
solve the multi-view semi-supervised problem. [10] trained a translation network
using both labeled and unlabeled data to obtain representations.

Although high performance is achieved by the methods. They are mainly
focusing on single-view setting while ignore the sophisticated cross-view rela-
tions and the extra latent connections between labeled and unlabeled samples.
Our approach is specifically designed for multi-view semi-supervised learning.
It jointly explores the cross-view and the cross-instance relations. Based on our
experiments, the revealed knowledge considerably improves the performance and
robustness of our approach.

3 Our approach

3.1 Preliminaries & Motivation

X1
l ∈ Rd1×nl and X2

l ∈ Rd2×nl are the feature matrices of two views, and they
belong to labeled samples. nl stands for the labeled instance number. d1, d2
are the feature dimensions of view1 and view2, and each column is an instance.
Similarly, X1

u ∈ Rd1×nu and X2
u ∈ Rd2×nu are the feature matrices of unlabeled

samples obtained from view1 and view2. nu is the unlabeled instance number.
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The label matrix Yl ∈ Rdl×nl of labeled samples are given, where dl is the
dimension of the label space. We denote the feature and label vector of the i-th
instance by x1li, x

2
li and yli. The goal is to recover the label of the unlabeled set

given X1
l , X2

l , X1
u, X2

u and Yl. Generally, our framework consists view-specific
encoders E1(·), E2(·), view-specific classifiers C1(·), C2(·), and a fusion network
CF (·). The encoders encode the original data to a subspace. The classifiers obtain
classification score L1 and L2. Then a label-level fusion mechanism CF (·) is
applied to derive a final result. Details are introduced in the following sections.

3.2 Semi-supervised Mixup

Limited training samples is a common challenge for general machine learning
tasks and it is significant in MVL scenario. Mixup [37] is an effective data aug-
mentation strategy. Although various modifications are proposed [3, 26], the label
information is always required. In this work, we propose a novel semi-supervised
version Mixup approach SeMix. Different from existing methods, SeMix fully
explores feature distributions of both labeled and unlabeled samples, and gen-
erates more general samples with confident labels. SeMix could be divided into
two parts: 1) Labeled augmentation and 2) Unlabeled augmentation.

Labeled Augmentation. Given labeled samples, SeMix augments labeled
data based on the follow steps. A random variable λ′ ∼ Beta(α, α) is sampled
where Beta(α, α) is the Beta distribution. And the weight parameter λ is ob-
tained via λ = max(λ′, 1 − λ′), where max(·, ·) is the max value of the inputs.

Then, the augmented representations, r̃i, and the corresponding labels, ỹ, could
be obtained from the equations below:

r̃inm = λEi(x
i
ln) + (1− λ)Ei(x

i
lm), i = {1, 2},

ỹnm = λyln + (1− λ)ylm,
(1)

where xiln and xilm are two randomly selected labeled samples from the i-th view,
yln and ylm are the corresponding label vectors. The obtained r̃inm and ỹnm could
be directly involved in the training procedure. In Eq. (1), SeMix augments the
samples in the encoded spaces instead of the original feature space since we
observed that the performance is higher and more stable.

Eq. (1) is the redesigned version of Mixup for labeled samples. There are
two-fold improvements compared with conventional Mixup methods [37]. First,
SeMix achieves augmentations in the low-dimensional subspace instead of the
original feature space. The representation of each sample in the subspace be-
comes more distinctive with lower noise. By this way, SeMix could effectively
and accurately explore the structural knowledge and generate clear and high
quality samples. The decision boundaries of the learned classifiers would become
smoother [26] which improves the generalization and the model. Second, we de-
fine λ′ following a Beta distribution instead of a uniform distribution and make
sure λ is bigger than 0.5 by the equation λ = max(λ′, 1 − λ′). This strategy
promises Ei(x

i
ln) is in a dominate place compared with Ei(x

i
lm). This constraint

is also useful for the unlabeled data and will be discusses in the following section.
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Unlabeled Augmentation. The above mentioned approach could only
work when the labels of both the pairwise samples are known. To fully explore
the distribution knowledge from the unlabeled samples, an effective algorithm is
designed which bypass the label missing issue while still guarantee the quality
of the augmented samples. Randomly select an unlabeled sample xiu and a la-
beled sample xilm, where i = {1, 2} means both of them are from the i-th view.
Assuming the label of xiu is y′u. According to Eq. (1), replacing xiln and yln with
xiu and y′u, we can obtain the representations and labels of xiu and xilm pair as:

r̃ium = λEi(x
i
u) + (1− λ)Ei(x

i
lm), i = {1, 2},

ỹum = λy′u + (1− λ)ylm.
(2)

Similarly, when xiu is paired with another labeled sample xiln, we can obtain
another set of representation and label as below:

r̃iun = λEi(x
i
u) + (1− λ)Ei(x

i
ln), i = {1, 2},

ỹun = λy′u + (1− λ)yln.
(3)

Since y′u is unknown, Eq. (2) and Eq. (3) cannot be directly deployed in the
training process. Therefore, we calculate the difference of the obtained labels,
ỹum and ỹun, and we can obtain the result as follow:

ỹun − ỹum = (1− λ)(yln − ylm). (4)

Therefore, Eq. (4) effectively bypass the missing label issue. When training,
we randomly selected an unlabeled sample xiu and two labeled samples xilm
and xiln to obtain the label difference. We also deploy the prediction differences
instead of exact prediction results in the objective function which is shown below:

Lsemi =
2∑

i=1

‖(Ci(r̃
i
um)− Ci(r̃

i
un))− (1− λ)(yln − ylm)‖2F, (5)

where Lsemi is the objective value based on the label differences and we minimize
Lsemi by jointly optimizing both the view-specific encoders and classifiers (i.e.,
E1(·), E2(·), C1(·), and C2(·)). In this way, SeMix fully explores the distribution
knowledge across the labeled and unlabeled samples which enhance the diversity
and generality of the augmented samples.

We give an intuitive explanation of SeMix in word embedding scenario for
easy understanding. For instance, we want the learned encoders and classifiers are
robust which could obtain accurate representation such as man-woman = king-
queen. This also explains why we set λ in the larger side (i.e., max(λ′, 1−λ′)). If
λ is small, the unlabeled data will be regarded as a noise since its scale is small.
It is hard for the model to find useful information in the unlabeled data.

3.3 Dual-level View-Correlation Adaptation

In MVL, classification discrepancy is that different views have different classi-
fication results. This commonly exists that because different views have their
unique characteristics. It can be a valuable clue for MVL.
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Here, we propose a novel way to explore and align the discrepancy in both
feature space and label space, and we name this mechanism as Dual-level View-
Correlation Adaptation(VCA). For the labeled data, the classification results
should be the same as the ground-truth. The objective function is as follow:

Llabeled =
2∑

i=1

‖ỹi − y‖2F, (6)

where ỹi is the classification result from the i-th view and y is the ground truth.
The training samples are labeled samples and the generated samples via Eq. (1).

For the unlabeled data, instead of forcibly eliminating the discrepancy of
C1(·) and C2(·), we optimize the encoders E1(·) and E2(·) to minimize the dis-
crepancy while the classifiers C1(·) and C2(·) to maximize the discrepancy. As
shown in Figure 2, this adversarial training strategy is the crucial module for
cross-view structure learning process. We define the objective function:

Lunlabeled = W (C1(r̃1n), C2(r̃2n)), (7)

where W (·, ·) is the Wasserstein Distance, the inputs are the classification results
from two views. We assume the prediction of the unlabeled samples are noisy
and uncertain, using Wasserstein distance can be more effective and stable.

Both of Eq. (6) and Eq. (7) are used to calculate the classification discrep-
ancies. We empirically tested different evaluation setups and we found out this
setup achieves the best performance.

The four networks are alternately optimized. Firstly, we use the labeled data
to train E1(·), E2(·) and C1(·), C2(·). The loss can be defined as follows.

min
C1,C2,E1,E2

Llabeled. (8)

The second step is letting the encoders minimize the discrepancy.

min
E1,E2

Llabeled + Lunlabeled. (9)

The third step is letting the classifiers to enlarge the discrepancy.

min
C1,C2

Llabeled − Lunlabeled. (10)

Labeled loss Llabeled to Eq. (9) and Eq. (10) are added to stabilize the opti-
mization. The empirical experiments also show that the performance decreases
significantly without Llabeled.

By adversarial training strategy, Ei(·) could borrow the structural informa-
tion from the other view and obtain more distinctive feature representations in
their subspaces. In addition, Ci(·) would obtain robust classification boundaries.
Overall, the adversarial manner promises: 1) the training step is more stable and
2) the model is more robust and has less possibility to be over-fitting.
Entropy-based modification. For Eq. (9) and Eq. (10), ideally, we want the
encoders to learn a more robust representations based on the guidance of the
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other view. However, in some cases, this process may decrease the capacity of the
encoders and make the final prediction results worse. For example, the view has
a wrong result affects the view with the right result by pulling them together.

Therefore, we introduce an entropy based module to handle this challenge.
Our goal is to make the view with the confident prediction to guide the other and
avoid the reverse effect. To achieve this goal, the entropy is used to evaluate the
confidence of a classification. The higher the entropy, the more uncertainty(lower
confidence) of the classification results. Specifically, if view 1 has a higher entropy
than view 2, the loss of view 1 should be larger than the loss of view 2. This
will encourage view 1 learns from view 2 while view 2 tries to preserve its own
knowledge. Therefore, Eq. (6) and Eq. (7) can be revised as below,

L1
unlabeled = H(C1(r̃

1))
H(C2(r̃2))

W (C1(r̃1), C2(r̃2)), (11)

L2
unlabeled = H(C2(r̃

2))
H(C1(r̃1))

W (C1(r̃1), C2(r̃2)), (12)

where H(·) stands for the entropy. The inputs of H(·) are two classification re-
sults from two views. ForW (·, ·), we haveW (C1(r̃1), C2(r̃2)) = W (C2(r̃2), C1(r̃1)).
Meanwhile, Eq. (9) and Eq. (10) are changed correspondingly as follows.

min
Ei

Llabeled + Li
unlabeled, i = {1, 2}, (13)

min
Ci

Llabeled − Li
unlabeled, i = {1, 2}. (14)

3.4 Label-level Fusion

The discrepancy still exists even after the alignment procedure. We assume dif-
ferent views have the unique characteristics and some categories could achieve
more accurate/reliable classification results from a specific view. An intuitive
example, if there are “Police” and “Doctor” views, “Police” view is good at
distinguishing good/bad people, while “Doctor” view is good at distinguishing
healthy/sick bodies. Conventional methods utilize naive mechanisms (e.g., mean
or max pooling) which lost valuable information. Based on this assumption, we
deploy a novel fusion strategy in label space. It automatically learns the pre-
diction confidences between different views for each category. Then, the best
prediction is learned as the final classification result.

In our model, we apply a cross-view fusion network CF (·) to handle this
challenge. For two predictions from different views ỹ1 and ỹ2, we multiply the
predictions with the transpose to obtain a matrix. There are totally three matri-
ces(i.e., ỹ>1 ỹ1, ỹ>2 ỹ2 and ỹ1

>ỹ2) In the matrix, each element is the multiplication
of the pairwise prediction scores. Then, we sum up three matrices and reshape
the matrix to a vector and forward to the fusion network CF (·). The framework
is illustrated in Figure 2. The objective function is shown below:

LF = ‖CF

(
reshape(ỹ>1 ỹ1 + ỹ>2 ỹ2 + ỹ1

>ỹ2)
)
− y‖2F, (15)

where y is the ground truth labels. By this way, CF (·) would hopefully discover
latent relations between different views and categories.
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4 Experiments

4.1 Dataset

Three action recognition multi-view datasets are deployed for our evaluation.
Depth-included Human Action dataset (DHA) [17] is an RGB-D multi-
view dataset. It contains 23 kinds of actions performed by 21 subjects. We ran-
domly choose 50% as the training set and the others as the testing set. We pick
the RGB and depth views for the evaluation. UWA3D Multiview Activity
(UWA) [24] is a multi-view action dataset collected by Kinect sensors. It con-
tains 30 kinds of actions performed by 10 subjects. 50% samples are randomly
extracted as the training set and the others are assigned to the testing set. Simi-
larly, we choose the RGB videos and depth videos for the experiments. Berkeley
Multimodal Human Action Database (MHAD) [22] is a comprehensive
multimodal human action dataset which contains 11 kinds of actions. Each ac-
tion is performed by 12 subjects with 5 repetitions. We choose RGB videos and
depth videos for the evaluation. 50% samples are set as the training set and the
others as the testing set.

4.2 Baselines

We test our approach under the scenario of multi-view (RGB-D) action recog-
nition. We deploy some baseline methods for comparison. Least Square Re-
gression (LSR) is a linear regression model. We concatenate the features from
different views together as the input. LSR learns a linear mapping from the fea-
ture space to the label spaces. Multi-layer Neural Network (NN) is a clas-
sical multi-layer neural network. It is deployed as a classifier with the multi-view
features concatenated as the input. Support Vector Machine (SVM) [25]
attempts to explore the hyper-planes in the high-dimensional space. The fea-
tures are concatenated from multiply views and the SVM module we used is
implemented by LIBSVM [5]. Action Vector of Local Aggregated De-
scriptor (VLAD) [11] is an action representation method. It is able to cap-
ture local convolutional features and spatio-temporal relationship of the videos.
Auto-Weight Multiple Graph Learning (AMGL) [20] is a graph-based
multi-view classification method designed for semi-supervised learning. Opti-
mal weights for each graph are automatically calculated. Multi-view Learn-
ing with Adaptive Neighbours (MLAN) [19] deploys adaptive graph to
learn the local and global structure and the weight of each view. Adaptive
MUltiview SEmi-supervised model (AMUSE) [21] is a semi-supervised
model for image classification task. It learns the parameters from the graph to
obtain the classification results. Generative Multi-View Action Recogni-
tion(GMVAR) [31] is a multi-view action recognition method. It augments
samples guided by another view and applies a label-level fusion module to get
the final classification.
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Table 1. Baselines and Performance. Clas-
sification accuracy (%) on DHA, UWA, and
MHAD datasets.

Setting Method DHA UWA MHAD

RGB

LSR 65.02 67.59 96.46
SVM [25] 66.11 69.77 96.09
VLAD [11] 67.85 71.54 97.17
TSN [34] 67.85 71.01 97.31

Depth
LSR 82.30 45.45 47.63
SVM [25] 78.92 34.92 45.39
WDMM [1] 81.05 46.58 66.41

RGB+D

LSR 77.36 68.77 97.17
NN 86.01 73.70 96.88
SVM [25] 83.47 72.72 96.80
AMGL [20] 74.89 68.53 94.70
MLAN [19] 76.13 66.64 96.46
AMUSE [21] 78.12 70.32 97.23
GMVAR [31] 88.72 76.28 98.94
Ours 89.31 77.08 98.94

Table 2. Ablation study. Classification
accuracy (%) on DHA [17] dataset.

Setting RGB Depth RGB+D

TSN [34] 67.85 - -
WDMM [1] - 81.05 -
MLP 77.10 79.01 79.12

Mixup 68.51 81.43 81.48
SeMix 69.37 82.73 83.15
VCA 75.26 80.86 81.32
VCA-entropy 80.86 82.61 84.10
Ours complete - - 89.31

4.3 Implementation

We extract initial action features from the original visual spaces first. We deploy
Temporal Segment Networks (TSN) [34] for RGB view and Weighted Depth
Motion Maps (WDMM) [1] for depth view respectively. The implementation
and feature extraction details are introduced below.
Temporal Segment Networks (TSN) [34] divides the video into several seg-
ments. Then it randomly samples and classifies the frames in each segment. The
fusion of all the classification results(e.g.mean) is the final result. We sample
5 frames for training and 3 frames for testing. Each video is described by a
concatenation of features from 3 frames.
Weighted Depth Motion Maps (WDMM) [1] is designed for human ges-
tures recognition in depth view. It proposed a new sampling method to do a
linear aggregation for spatio-temporal information from three projections views.

For LSR, NN and SVM, the original RGB features and depth features are
extracted by TSN and WDMM respectively. We apply a normalization to both
features since directly concatenating features from different views is not reason-
able due to the the view heterogeneity. Then we concatenate these two features
as a single feature. We use LSR, NN and SVM to classify the single feature.
For AMGL, MLAN, AMUSE and GMVAR, we consider RGB features extracted
by TSN and depth features extracted by WDMM as two views for multi-view
setting. We do not include extra preprocessing steps for fair comparison.

4.4 Performance

The experimental result is shown in Table 1. From the results, we observe that
our approach outperforms other state-of-the-art methods. It illustrates the ef-
fectiveness of our approach. Our model achieves similar performance in MHAD
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Table 3. Classification accuracy(%) given different ratios of labeled training samples.

Dataset Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

DHA
GMVAR [31] 44.86 62.55 69.14 73.25 77.37 80.66 84.36 84.36 86.01 88.72

Ours 48.15 69.14 74.90 79.42 83.54 83.56 85.60 86.83 87.24 89.31

UWA
GMVAR [31] 35.18 46.64 54.15 58.57 65.61 69.17 73.91 75.49 76.28 76.28

Ours 36.36 57.71 62.85 64.03 67.98 70.75 73.12 76.56 76.66 77.08

MHAD
GMVAR [31] 53.36 72.79 90.11 92.64 93.41 94.76 95.91 95.49 96.28 98.94

Ours 52.30 75.83 91.17 92.23 92.93 93.11 95.05 96.82 97.88 98.94

dataset compared with the best performance, we assume the classification ac-
curacy in MHAD dataset is already high (i.e., 98.94%) and is too challenging
to obtain considerable improvements. For DHA and UWA datasets, our perfor-
mance is slightly higher than GMVAR [31]. We assume the datasets are well-
explored and hard to achieve great improvement. Meanwhile, Table 3 shows that
our improvements are higher when less labeled samples(< 50%) are given, which
reveals the potential and advantages of our model in semi-supervised setting.

4.5 Ablation Study

To prove the effectiveness of all the components in our approach, we intentionally
remove some components and evaluate the performance based on partial of our
model. We also evaluated the efficiency of our approach utilizing labeled samples.
The effectiveness of the generated samples are also explored. In Table 2, the
performance of TSN and WDMM are listed as baselines. The baseline model
only has an encoder and a classifier for each view and only optimized by Eq. (8).
Mixup and SeMix. We conduct two experiments to prove the effectiveness of
SeMix compared with Mixup. The first experiment is Mixup with labeled data.
We apply the data augmentation method from [37] with Eq. (1) as the base-
line model. The second experiment is SeMix with both labeled and unlabeled
data. We apply Eq. (1) and Eq. (5) simultaneously to the baseline model. We
concatenate the obtained representations of the two views and send it to a two-
layer neural network to get the RGB+D multi-view performance. The results
are shown in Table 2 and Figure 3 (a) and (b). In Table 2, we observe that both
Mixup and SeMix achieve considerable improvements in single-view scenario.
We can conclude that our framework does learned the extra structural knowl-
edge from the other view’s distribution and help the single view classification.
From Figure 3 (a) and (b), we can see that SeMix achieves higher and more
stable performance than the Mixup baselines. We assume SeMix fully utilizes
the unlabeled information, which helps the classification and representation.
VCA and VCA-entropy. We conduct several experiments to prove the effec-
tiveness of VCA and the entropy-based VCA, VCA-entropy. VCA and VCA-
entropy aims to operate the Dual-level View-Correlation Adaptation and we
evaluate the performance with and without the entropy algorithm. MLP is the
baseline model. It has an encoder and a classifier for each view. A cross-view
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Fig. 3. Ablation study results. (a) and (b) are the performance of Mixup and SeMix
in RGB view and depth view. Blue lines are the performance of Mixup and red lines
are the performance of SeMix. (c), (d) and (e) are the performance of MLP, VCA and
VCA-entropy in RGB view, depth view and after the cross-view fusion. Blue lines,
green lines and red lines indicate MLP, VCA and VCA-entropy respectively. (f) is the
performance of cross-view fusion. The whole framework is proposed to achieve a higher
cross-view fusion. Blue line, yellow line, green line and red line indicate the MLP,
VCA-entropy, SeMix and our whole framework respectively. The shadow lines are the
exact performance, indicating the robustness and stability of the model.

fusion mechanism is implemented to obtain the final result. For VCA, we sim-
ply add the cross-view adaptation part(i.e. Eq. (9) and Eq. (10)) to MLP. For
VCA-entropy, we change the loss functions Eq. (9) and (10) in VCA to Eq. (11)
and (13). Our results are shown in Table 2 and Figure 3 (c), (d) and (e). They
illustrate the classification performance of view1 (RGB), view2 (Depth), and the
final fusion result respectively. For each graph, there are three different lines with
different colors. The blue, green and red lines indicate the results of the MLP,
VCA and VCA-entropy respectively. We observe that in most of the cases the
VCA performs better than MLP, which demonstrates the effectiveness of the
VCA component in our approach. While in Figure 3 (c), VCA performs lower
than MLP. We assume that this is because the view (RGB) with the correct
classification results is misled by the view (depth) with the wrong classification
results. However, VCA-entropy always achieves the best the best performance
compared with VCA and MLP. This proves that the entropy-based modification
can effectively evaluate the confidence of each view and assign the view with the
higher confidence to guide the training of the other view.
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Fig. 4. (a) t-SNE Visualization of the feature extracted by TSN [34]. We use the
pretrained ResNet-101 model and finetune it with raw DHA RGB features. (b) t-SNE
Visualization of the output of encoder E1(·). We train the whole framework for 800
epochs. (c) Performance when we use different amount of labeled data.

Complete Framework. We conduct experiments to prove that by combining
these two modules, our methods can be further improved. Since our target is
classification result based on two views, we show four final results of our models:
1) MLP with the cross-view fusion module, 2) SeMix with the cross-view fusion
module, 3) VCA-entropy with cross-view fusion module, and 4) the complete
model. Our results are shown in Table 2 and Figure 3 (f). Figure 3 (f) indicates
that both SeMix or VCA-entropy are helpful to improve the final performance,
and by adding both SeMix and VCA-entropy, the performance achieves the best.
This means our framework is able to compromise the merits of both SeMix and
VCA-entropy and further improve the classification performance.

Visualization. We utilize t-SNE [18] to visualize the distribution of the RGB
features and its representations after the encoder. DHA dataset is deployed for
this experiment. The RGB feature is extracted by TSN [34] model. The represen-
tation is the output of the encoder in our model after training 800 epochs. The
solid circles are labeled data while hollow circles are unlabeled data. Different
colors stand for different actions. Figure 4 (a) is the distribution without VCA
while Figure 4 (b) is the distribution with VCA. We observe that the represen-
tations from the same class cluster better than the feature extracted by TSN.
This can potentially help the model with the higher classification performance.
The unlabeled data also clusters better after representation. This proves the
effectiveness of our model. In summary, the results indicate the RGB encoder
learns from the depth view.

Labeled Samples. We conduct the experiments to prove our model still works
well even when fewer labeled samples are provided. We change the number of
available labeled samples from 10% of the training samples to 100% of the train-
ing samples. The performance is shown in Figure 4 (c). The x-axis indicates the
ratio of the labeled samples to the whole training set. The y-axis is the clas-
sification accuracy. From Figure 4 (c), we observe that the performance grows
quickly in the beginning for all datasets. When the ratio is larger than 40%,
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the growth trend becomes slow. This indicates our semi-supervised model can
achieve a comparable result with only 50% labeled data are available. The re-
sults further prove that our model can efficiently utilize the labeled sample and
practically avoid the extremely expensive data labeling procedure.

Table 4. Accuracy (%) of different generate number

Dataset 0x 0.1x 0.3x 0.5x 1x 2x 3x

DHA 84.10 87.24 88.07 88.07 89.31 88.89 89.31
UWA 75.49 76.30 77.08 76.68 77.08 77.47 76.28

MHAD 98.23 98.59 98.23 98.23 98.94 98.94 97.88

Generated Samples. We evaluate the helpfulness of the generated samples.
In Table 4, different amount of the generated samples are utilized for training
the model. The first row indicates the ratio of the generated samples to labeled
samples. Specifically, 0x indicates there are only real samples. We observe that
for DHA and UWA datasets, the performance under different ratios are higher
than the results without the generative samples. The performance reaches the
peak around 1x and 2x. More samples could not improve the performance and we
assume it reaches the limitation of SeMix, and the slight performance decrease
could be fluctuations. For MHAD dataset, since the 0x performance is relatively
high, it is hard to significantly improve the performance. While, our model still
slightly outperforms the 0x when the modal generates 1x and 2x samples.

5 Conclusion

We propose a novel Generative View-Correlation Adaptation framework for semi
supervised multi-view learning. A new data augmentation mechanism, SeMix,
is proposed which utilizes both labeled and unlabeled data to generate more
diverse and robust auxiliary samples. In addition, a multi-view dual-level align-
ment strategy is designed. The classification results from both views are used to
guide the training of the encoders and classifiers where the structural information
from both feature and label space are effectively explored. Moreover, a simple
yet effective view-correlation fusion network is applied which reveals the latent
label relations and obtains the final result. Extensive experiments are conducted
which demonstrate the effectiveness of our approach. More comprehensive ab-
lation studies illustrate that all the modules in our approach are necessary and
indispensable which considerably improve the final performance.
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